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Near-contact electrophoretic motion of a sphere
parallel to a planar wall
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The electrophoretic motion of a sphere resulting from an applied electric field directed
parallel to a nearby plane wall is analysed for the case of a small sphere–wall gap
width. The thin-Debye-layer approximation is employed. Using matched asymptotic
expansions, the fluid domain is separated into an ‘inner’ (gap-scaled) region, wherein
the electric field and velocity gradients are large, and an ‘outer’ (sphere-scaled) region,
wherein field variations are moderate. Asymptotic expressions for the force and
torque acting on the sphere are obtained using a reciprocal theorem, thereby avoiding
the need to explicitly solve the pertinent Stokes equations. These expressions, as
well as the sphere’s electrophoretic mobility, become unbounded for near-contact
separations. The present asymptotic solution complements existing ‘exact’ bipolar-
coordinate eigenfunction expansions, which are numerically suitable only for O(1)
gap thicknesses.

1. Introduction
The problem of electrophoretic motion near boundaries possesses practical

significance for a diverse class of applications involving bounded electrokinetic flows,
ranging from traditional gel electrophoresis to those occurring in microfluidic devices.
The Helmholtz–Smoluchowski mobility approximation fails to provide an appropriate
model for these applications, as it does not capture any wall effects. Such effects may
be substantial in the case of particles moving through narrow channels, since the
electrophoretic mobility may vary significantly as the particles approach the walls
(Keh & Chen 1989). Moreover, while simplified mobility models may suffice to
describe the mean particle motion, more rigorous analysis is required to understand
the nonlinear Taylor dispersion phenomena accompanying these transport processes.
The virtual absence of dispersion during processes involving ‘point-size’ particles
(which do not experience wall effects) is one of the principal reasons why
electrokinetic separation is preferred over alternative methods, such as hydrodynamic
chromatography.

Electrokinetic flows represent a balance between animating electrical body forces,
acting on electrically non-neutral fluid elements, and retarding viscous stresses. The
regions of non-neutrality, known as Debye double layers, form in proximity to charged
surfaces (such as colloidal particle boundaries). The system of equations governing
the flow and transport processes occurring within these layers is coupled as well
as highly nonlinear (Russel, Saville & Schowalter 1989). As typical applied electric
fields are relatively weak compared with those existing within the layer, it is common
to linearize these equations about an equilibrium Debye-layer structure, with the
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leading-order perturbations being proportional to the applied field (O’Brien & White
1978). This procedure yields a linear relation between the externally applied field and
resulting particle velocity, leading thereby to the concept of electrophoretic mobility.

A further simplification (O’Brien & Hunter 1981; O’Brien 1983) is made possible
based upon the relatively small thickness of the layer. Indeed, even in the case of
miniaturized microfluidic devices (Stone & Kim 2001), the Debye-layer width, say κ−1,
is usually small relative to the pertinent ‘macroscale’ length scales (e.g. channel width
or solute particle dimension). The flow domain is therefore conceptually separated into
two regions: the first consists of thin Debye layers surrounding the various surfaces
in contact with the electrolyte, whereas the second region consists of the electrically
neutral bulk fluid domain. Integration of the transport equations within the Debye
layers in a direction normal to the charged surfaces provides boundary conditions
to be imposed at the bulk-scale level of description (wherein these layers appear as
singular surfaces). Hence, the pertinent bulk flows are governed by the conventional
Stokes equations (with no electrical body forces), albeit with ‘slip’ conditions imposed
at the charged boundaries. This slip reflects a finite velocity jump across the Debye
layer, whose magnitude is proportional to the local value of the macroscale electric
field at the boundary (Keh & Anderson 1985). This field, in turn, is derived from an
electric potential. The latter satisfies Laplace’s equation within the bulk fluid domain,
subject to Neumann-type conditions on the boundaries.

Many practical electrokinetic processes involve solute transport occurring in dilute
dispersions, for which circumstances it suffices to restrict attention to boundary
effects upon the motion of a single particle. Using the thin Debye-layer formalism
described above, Morrison (1970) demonstrated that such a particle would translate
with the Smoluchowski velocity in the absence of boundaries, and would not rotate.
These conclusions do not generally hold in the presence of solid walls (or other
particles). However, within the thin-Debye-layer formalism, such boundaries do not
pose significant computational difficulties, given the ubiquity of the Stokes and
Laplace equations.

The simplest wall effect model entails a sphere moving under the influence of
an applied electric field directed parallel to a nearby plane wall. This problem
was originally analysed for large sphere–wall separations using successive reflections
(Keh & Anderson 1985). As would be expected, the presence of the wall acts as to
reduce the particle velocity (compared with the Smoluchowski value appropriate for
a particle in an unbounded fluid). Subsequently, an exact solution to this problem
was furnished by Keh & Chen (1989) using bipolar coordinates to evaluate the
electric potential in the fluid, as well as to calculate the resulting fluid velocity
field. In this coordinate system, the electric potentials, together with the velocity and
pressure fields, appear as eigenfunction expansion series, the respective coefficients
of which were evaluated by truncating an infinite algebraic system of equations. For
large particle–wall separations, the results of Keh & Chen predicted a reduction in
electrophoretic mobility, in agreement with the reflection expressions provided by
Keh & Anderson (1985). However, decreasing separations reverse this trend, whence
the particle velocity is enhanced with a diminishing sphere–wall gap distance.
Moreover, as this clearance vanishes, the force and torque exerted on the sphere (and,
as a result, its electrophoretic mobility) all become unbounded. (As bipolar-coordinate
expressions invariably converge poorly for separations approaching contact, Keh &
Chen were apparently unable to obtain precise results for separations smaller than
about half a percent of the sphere radius.) This interesting phenomenon is qualitatively
different from that for comparable particle motion throughout an electrolyte-free
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liquid under the influence of an external field, wherein the logarithmic divergence of
the drag forces (Happel & Brenner 1965) results in diminishing particle velocities at
near-contact separations.

The analysis which follows furnishes asymptotic expressions for the force and
torque on the sphere when the gap is small compared with the sphere’s radius.
This complements the eigenfunction expansions of Keh & Chen (1989), in the same
sense as the small-gap analysis of O’Neill & Stewartson (1967) complements the
creeping-flow bipolar-coordinate solution of O’Neill (1964) for the problem of a
sphere translating parallel to a wall (in the absence of electrokinetic effects). As
such, this work may be of interest in various applications, as accurate mobility
models for small separation distances are important for various fields, such as
electrophoretic aggregation (Zeng, Zinchenko & Davis 1999) and crystallization on an
electrode surface (Böhmer 1996). Indeed, the poor convergence of bipolar-coordinate
expressions for separations approaching contact has led to attempts to improve the
convergence of such expressions (Zeng et al. 1999).

In the pioneering small-gap analysis of O’Neill & Stewartson (1967) the fluid domain
was separated into two regions: an inner, gap-scaled, region, in the neighbourhood
of the closest separation between the sphere and the wall; and an outer region
(wherein, to leading order, the sphere appears to be touching the wall) consisting of
the remaining flow domain. The flow problem in the outer region was solved using
tangent-sphere coordinates, with the velocity and pressure fields eventually expressed
as Hankel transforms. These expressions become singular at the ‘contact’ point.
Within the inner region, velocity gradients and pressures are large in magnitude, and
the solution possesses a lubrication-type structure. A similar analysis was carried out
by Cooley & O’Neill (1968) for the case of a sphere rotating about an axis parallel
to a nearby wall.

O’Neill & Stewartson’s solution scheme has become a standard asymptotic tech-
nique for resolving other physical problems involving small particle–wall separations
(e.g. Hu & Joseph 1999 for the case of a non-Newtonian fluid). As a matter of
fact, the near-contact geometry has also been employed in electrokinetic analysis,
albeit for a different physical problem involving electrokinetic lift (see e.g. Warszyński,
Wu & van de Ven 1998, who analysed the case of an infinite cylinder in the
proximity of a wall). However, such electroviscous forces are usually negligible during
electrophoresis, at least when the Debye layers are thin (Cox 1997). As such, these
analyses are not directly pertinent to the present investigation.

The first small-gap solution of Laplace’s equation subject to Neumann-type
boundary conditions (Jeffrey & Chen 1977) was carried out for the axisymmetric
case (wherein the applied field acts perpendicular to the wall). The comparable
asymmetrical case of a field acting parallel to the plane is more difficult to solve.
The outer solution thereof was obtained by Latta & Hess (1973) in the context
of irrotational flows, using inversion methods. The respective inner solution was
obtained by Solomentsev, Velegol & Anderson (1997) to terms of leading order in
the dimensionless gap width.

Once the electric potential solution is obtained, the boundary ‘slip’ conditions to
be imposed upon the fluid velocity field at the sphere and wall surfaces may be
considered as ‘known’. Owing to the linearity of the resulting Stokes-flow problem,
it proves convenient to decompose the requisite boundary-value problem posed at
the sphere and wall surfaces – together with their respective contributions to the
total force and torque acting on the sphere – into four distinct parts. The first
two are respectively associated with the translation and rotation of a sphere near a
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plane wall in the absence of slip on both surfaces, for which appropriate asymptotic
approximations already exist (O’Neill & Stewartson 1967; Cooley & O’Neill 1968).
The third and fourth contributions, pertaining to electrokinetic slip, depend upon the
electric field distribution at the sphere surface.

Given the slip conditions on the sphere (in terms of the above-mentioned electric
field), it is possible in principle to evaluate the resulting Stokes flow and hence the
consequent tractions on the sphere. However, the requisite algebra turns out to be
forbidding. Instead, we employ a reciprocal theorem (Brenner 1964), which reduces
the evaluation of the force (torque) on the sphere to a straightforward quadrature
requiring knowledge only of the classical (electrolyte-free) stress field resulting from
movement of a translating (rotating) sphere in proximity to the wall in a fluid
otherwise at rest. This procedure furnishes the desired expressions for the force and
torque. The dominant terms in these expressions, which diverge as a negative irrational
power of the gap width, are explicitly evaluated based upon knowledge of the electric
potential and flow-field distribution over the inner portion of the sphere’s surface.
Comparison of this divergent behaviour with the ‘exact’ bipolar-coordinate results
confirms excellent agreement of the two schemes. The O(1) coefficients appearing in
these expressions, which depend upon the fields in the outer region, are evaluated
using a ‘patching’ procedure with this ‘exact’ solution, in a manner similar to that
employed by Goldman, Cox & Brenner (1967a).

A unique feature of the present analysis is that the actual Stokes equations are
never explicitly solved during the course of obtaining the force and torque (using,
instead, the reciprocal theorem). This feature renders the present perturbation scheme
attractive with regard to resolving other classes of problems involving particle–wall
flows in which the velocity field is coupled (through boundary conditions on the parti-
cle surface) to another field satisfying Laplace’s equation. A typical case would be that
of the thermophoretic motion of a drop parallel to a plane wall (cf. Loewenberg &
Davis 1993).

The paper is organized as follows. The overall problem formulation, governing the
electric potential and flow fields, as well as the decomposition of the flow field into
four distinct parts, is described in § 2 for arbitrary sphere–wall separations. Detailed
expressions for the electric field in both the outer and inner regions are provided in
§ 3 for the case of small gap widths. Evaluations of the third and fourth contributions
to the force and torque are respectively given in § § 4 and 5. Section 6 summarizes and
discusses the results obtained.

2. Formulation
Consider a spherical colloidal particle moving within an electrolyte solution

bounded by a stationary plane wall W under the influence of an applied uniform
electric field E∞ acting parallel to the plane. Both the sphere and plane are assumed
to be non-conducting and to each possess uniform surface charge densities, with
respective zeta potentials ζp and ζw . The sphere’s radius is a and the closest distance
of its surface from the wall is aδ (see figure 1). We employ Cartesian coordinates
(ax, ay, az) with origin on the wall, in which the x-direction lies along the direction
of E∞, as well as cylindrical polar coordinates (aρ, ψ, az) having the same origin. The
z-axis, which lies normal to W , passes through the sphere centre O , whose Cartesian
coordinates are [0, 0, a(1 + δ)].

In the limit of small Debye-layer thickness, the respective matching conditions
imposed upon the various fields in the transition region between the Debye layer
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Figure 1. Particle–wall geometry: (a) particle scale; (b) gap-scaled region;
(c) strained gap region.

and the ‘bulk’ fluid may be utilized as bulk-field boundary conditions at the various
surfaces in contact with the fluid (O’Brien 1983; Keh & Anderson 1985). The first is
that the normal component of the electric field vanishes,

n · ∇Φ = 0, (2.1)

where Φ(x) is the electric potential at the point x, and n the unit vector normal to
the boundary (pointing into the fluid). The second condition is that the fluid ‘slips’
on the surfaces at a velocity (εζ/µ)∇Φ , where ε and µ are, respectively, the dielectric
permittivity and viscosity of the fluid. For a sphere whose centre moves at velocity U
and which rotates at an angular velocity Ω , the fluid velocity on the sphere’s surface
P is thus given by

v =
εζp

µ
∇Φ + U + aΩ × n. (2.2)

As the bulk region outside of the Debye layer is electrically neutral, the Poisson
equation governing Φ degenerates to the Laplace equation, and electrical body forces
are absent from the Navier–Stokes equations. Far from the sphere, Φ ∼ −E∞ax.
Although the velocity field is coupled to the electrostatic field through the boundary
condition (2.2), the electrostatic problem governing Φ may be solved independently.

In non-dimensionalization of the pertinent variables, we normalize length variables
with a, velocities with the characteristic electrophoretic velocity, U = εζpE∞/µ,

angular velocities with U /a, stresses with µU /a, and the electric potential with E∞a.
The Neumann-type boundary-value problem governing Φ consists of: (i) Laplace’s
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equation in the fluid domain,

∇2Φ = 0; (2.3)

(ii) the boundary conditions on the sphere and wall,

n · ∇Φ = 0 on P ∪ W ; (2.4)

and (iii) the far-field condition,

Φ → Φ∞ ≡ −x as |x| → ∞. (2.5)

For typical scenarios, fluid inertia forces are negligible and the creeping-flow
equations are applicable (Stone & Kim 2001). The problem governing the flow
field consists of: (i) the continuity equation,

∇ · v = 0; (2.6)

(ii) the Stokes equations,

∇2v = ∇p; (2.7)

(iii) the boundary condition on the sphere,

v = ∇Φ + U + Ω × n on P; (2.8)

(iv) the boundary condition on the wall,

v = γ ∇Φ on W ; (2.9)

and (v) the far-field condition,

v → γ ∇Φ∞ as |x| → ∞. (2.10)

In the above, γ = ζw/ζp , and γ ∇Φ∞ (=−γ ex) is the uniform electro-osmotic velocity far
from the sphere. Once the velocity and pressure fields are obtained, the hydrodynamic
stress field π may be calculated from the expression

π = −pI +
[
∇v + (∇v)†] , (2.11)

where I is the dyadic idemfactor. As Φ may be determined (up to an irrelevant additive
constant) by equations (2.3)–(2.5), the velocity field is defined well by (2.6)–(2.10). In
principle, the present linear problem can be solved to obtain the electric potential Φ ,
fluid velocity v, and pressure field p.

Formally speaking, the force and torque acting on the sphere may be expressed
as surface integrals involving the stress field (incorporating electric Maxwell stresses)
evaluated at the sphere’s actual boundary (that is, at the inner edge of the Debye
layer). However, since the stress field is symmetric and divergence-free throughout the
entire fluid domain (and, in particular, within the Debye layer), these integrals may
be performed at the outer edge of the layer (namely over P). In general, the Maxwell
stresses do not vanish in the bulk region. However, since these stresses are quadratic
in the electric field, their contribution is negligible in the context of the present linear
electrophoretic analysis. Integration of the hydrodynamic stress field (2.11) yields the
hydrodynamic force (normalized with 6πµU a),

F =
1

6π

∮
P

dS n · π, (2.12)

and torque (normalized with 8πµU a2) about the sphere centre, xO ,

T =
1

8π

∮
P

dS (x − xO) × (n · π) , (2.13)
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exerted by the fluid on the sphere. Both F and T are obviously linear in each of
the parameters E∞(=ex), U and Ω . For a force- and couple-free particle, equating
these two to zero yields the sphere’s velocities, U and Ω , as linear functions of
E∞. Since ez the only space-fixed geometrically specified vector characterizing the
problem, it is clear that the vector U is proportional to E∞, whereas the pseudo-vector
Ω is proportional to ez × E∞. With E∞ pointing in the x-direction, we conclude
that U = U ex and Ω = Ωey (the latter result is also deducible from symmetry
considerations).

Owing to the linearity of the flow problem, it is convenient to decompose the flow
field (v, p) into four distinct contributions, labelled (a)–(d), each satisfying the flow
equations (2.6)–(2.7) and the following boundary conditions:

(a) (b) (c) (d)

on P: v = U v = Ω × n v = (1 − γ )∇Φ v = γ ∇Φ

on W : v = 0 v = 0 v = 0 v = γ ∇Φ

as |x| → ∞: v → 0 v → 0 v → 0 v → γ ∇Φ∞

The total hydrodynamic force (torque) acting on the particle consists of the sum of
the respective forces (torques) resulting from the separate motions (a)–(d). In terms
of the resulting forces and torques, problem (a) is equivalent to that of a non-rotating
sphere translating with a velocity U through an otherwise quiescent fluid, with no-slip
on both the sphere and the wall. Likewise, problem (b) is equivalent to that of a non-
translating sphere rotating about an axis through its centre with an angular velocity
Ω in an otherwise quiescent fluid, with no slip on both the sphere and the wall.
Problems (c) and (d) reflect the electrokinetic portions of the overall flow problem
posed.

The foregoing formulation applies for arbitrary sphere–wall separation distances.
In what follows, we focus on the small gap limit, δ � 1. Asymptotic solutions for
small gap widths already exist for both the Laplace equation (Jeffrey & Chen 1977;
Jeffrey 1978; Solomentsev et al. 1997) and the creeping-flow equations (O’Neill &
Stewartson 1967; Cooley & O’Neill 1968) in the context of several physical problems.
In obtaining these solutions it was observed that regular perturbations of the pertinent
fields in powers of δ may become singular in the vicinity of the gap, where |x| → 0.
Hence, such regular perturbation fields constitute bona fide solutions only in the
outer region. The respective inner solutions (within the gap) of these equations
have been obtained by the above-cited authors via an appropriate scaling of the
coordinates. Using this asymptotic matching method, the respective hydrodynamic
forces and torques corresponding to problems (a) and (b) have already been obtained
(O’Neill & Stewartson 1967; Cooley & O’Neill 1968). In the present work we need
therefore only solve problems (c) and (d). A preliminary step towards these solution
is the evaluation of the electric potential. This is established in the next section.

3. The electric potential
3.1. Outer solution

In terms of the polar cylindrical coordinates, the surface of the sphere is given by the
equation

(z − 1 − δ)2 + ρ2 = 1. (3.1)
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Figure 2. Tangent-sphere coordinate system: meridian plane view.

To leading order in δ, this surface is tangent to the wall. Hence, it is convenient to
employ tangent-sphere coordinates, (ξ, η, ψ), defined as (Jeffrey 1978)

ρ =
2η

(ξ 2 + η2)
, z =

2ξ

(ξ 2 + η2)
, (3.2)

in which the surface ξ = const. constitutes a sphere centred about the point (0, 0, 1/ξ )
and tangent to the plane z = 0 (see figure 2). In terms of these coordinates the wall
is located at ξ = 0, whereas the sphere surface P is given by the equation

ξ ∼ 1 + δ
η2 − 1

2
+ O(δ2), (3.3)

which, in the limit δ → 0, corresponds to the surface ξ = 1.
It is convenient to write Φ =Φ∞ + ϕ, wherein Φ∞ = −x is the potential far from

the sphere. In the present small-δ analysis we need only evaluate the leading-order
approximation to ϕ, say ϕ(0). In terms of the tangent-sphere coordinates, ϕ(0) satisfies
the following boundary conditions: (i) on the sphere surface,

∂ϕ(0)

∂ξ
= −4

η

(η2 + 1)2
cosψ at ξ = 1; (3.4)

(ii) on the wall,

∂ϕ(0)

∂ξ
= 0 at ξ = 0; (3.5)

and (iii) in the far field,

ϕ(0) → 0 for ξ,η → 0. (3.6)
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Laplace’s equation can be solved in tangent-sphere coordinates using Hankel
transforms (Jeffrey 1978). Explicitly, the most general harmonic function which
matches the azimuthal dependence of (3.4), satisfies the symmetry condition (3.5),
and attenuates at infinity is (Moon & Spencer 1988)

ϕ(0) = (ξ 2 + η2)1/2M(ξ, η) cos ψ, (3.7)

wherein

M(ξ, η) =

∫ ∞

0

sA(s) cosh(ξs) J1(ηs) ds. (3.8)

The function A(s) is evaluated using the non-homogeneous boundary condition (3.4),
which requires that

(η2 + 1)
∂M

∂ξ
+ M = − 4η

(η2 + 1)3/2
at ξ = 1. (3.9)

Application of the Hankel transform of order one

H1{f (s); s 	−→ η} =

∫ ∞

0

sf (s) J1(ηs) ds, (3.10)

in conjunction with the pair of relations (Sneddon 1972)

H1{η2f (η); η 	−→ s} = −
(

∂2

∂s2
+

∂

∂s
− 1

s2

)
H1{f (η); η 	−→ s}, (3.11)

H1

{
η

(η2 + 1)3/2
; η 	−→ s

}
= e−s, (3.12)

yields the following differential equation governing G(s) = sA(s) sinh s:

s2G′′ + sG′ − (1 + s2 + s coth s)G = 4s2e−s . (3.13)

Once G is evaluated, M may be obtained by effecting the quadrature,

M =

∫ ∞

0

G(s)

sinh s
cosh ξs J1(ηs) ds. (3.14)

The problem governing ϕ(0) does not provide any boundary conditions to impose
upon G(s). However, in order that the integral (3.14) be convergent it is required that
G(s) ∼ o(s−1) for s � 1, and that G(s) ∼ o(s) for s � 1. Near the regular singular

point s = 0, one homogeneous solution is G1(s) = s
√

2[1 + 1
3
(
√

2−1)s2+O(s4)], whereas

the other solution, ∼s−
√

2, is non-integrable. The particular solution near that point

is Gp(s) = 2s2 − 4
7
s3 + O(s4). Consequently, G(s) ∼ Cs

√
2 for s � 1. Near the irregular

singular point s = ∞, one homogeneous solution is e−s/s, whereas the particular
solution is se−s . These solutions are exact up to exponentially small errors. The
other homogeneous solution, ∼es , is rejected since it leads to a divergent integral.
Consequently, G(s) ∼ se−s for s � 1. Equation (3.13) was integrated numerically
twice: In the first integration, the expansion G1(s) was used for the starting (small)
value of s; in the second integration, in which the right-hand-side of (3.13) was set to
zero, the expansion Gp(s) was used. The coefficient C that made the linear combination
of these two solutions ∼se−s for large s was chosen, yielding C = −1.79119. The above
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are essentially the results obtained by the inversion-method analysis of Latta & Hess
(1973) in the context of irrotational flow.†

The behaviour of ϕ(0) at infinity, where both η and ξ are small, is dominated by the
contribution to the integral representation (3.14) arising from the region s ∼ O(ξ−1).
Use of the asymptotic form of G(s) for large arguments yields, in terms of the
integration variable t = ξs,

M ∼ 2

ξ 2

∫ ∞

0

t J1(ηt/ξ ) e−2t/ξ cosh t dt. (3.15)

Evaluation (Sneddon 1972) of the latter integral yields

ϕ(0) ∼ 1
4
η(η2 + ξ 2)1/2 cos ψ, (3.16)

or, in terms of cylindrical polar coordinates,

ϕ(0) ∼ ρ

(ρ2 + z2)3/2
cos ψ, (3.17)

corresponding to a dipole oriented in the negative x-direction.
The behaviour of ϕ(0) near the gap, where η � 1, is dominated by the contribution

to the integral (3.14) from the region s ∼ O(η−1). Use of the asymptotic form of G

for small arguments yields, in terms of the integration variable t = ηs,

M ∼ Cη−
√

2

∫ ∞

0

t
√

2−1J1(t) dt. (3.18)

Evaluation of this integral (Sneddon 1972) gives

ϕ(0) ∼ C
2

√
2−1�

(
1
2
(1 +

√
2)

)
�

(
1
2
(3 −

√
2)

) η1−
√

2 cosψ, (3.19)

with � the Gamma function. Since ρ ∼ 2/η for η � 1, the electric field is singular in
this region. Accordingly, in order to obtain a uniform solution it becomes necessary
to separately analyse the gap region, wherein z ∼ O(δ), by rescaling the pertinent
variables in this region.

3.2. Inner solution

Here, we follow Solomentsev et al. (1997). Define the stretched coordinates,

Z = z/δ, R = ρ/δ1/2, (3.20)

which transform the surface of the sphere (3.1) lying in the proximity of the wall into
the representation

Z = H (R; δ) (3.21)

(see figure 1), wherein

H (R; δ) ∼ 1 +
R2

2
+ δ

R4

8
+ · · · � H (0)(R) + δH (1)(R) + · · · . (3.22)

† Another physical problem possessing the present Neumann-type structure is that posed by
the optical polarization of a pair of touching spheres (Paley, Radchik & Smith 1993). While
those authors employed tangent-sphere coordinates for the solution of Laplace’s equation, their
subsequent analysis failed to recognize that the non-homogeneous boundary condition on the
sphere is transformed into a differential (rather than algebraic) equation for the Hankel transform
of the potential (cf. (3.13)).
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In terms of these stretched coordinates, the gradient operator is given by

∇ = δ−1ez

∂

∂Z
+ δ−1/2 eρ

∂

∂R
+ δ−1/2 eψ

1

R

∂

∂ψ
. (3.23)

Thus, the outward (non-unit) normal vector to the sphere is given by

N = −ez + δ1/2eρ

[
dH (0)

dR
+ δ

dH (1)

dR
+ · · ·

]
. (3.24)

The boundary-value problem governing Φ ≡ Φ(R, Z, ψ; δ) consists of: (i) the
Laplace equation,

∂2Φ

∂Z2
+ δ

[
∂2Φ

∂R2
+

1

R

∂Φ

∂R
+

1

R2

∂2Φ

∂ψ2

]
= 0; (3.25)

(ii) the boundary condition on the wall,

∂Φ

∂Z
= 0 at Z = 0; (3.26)

(iii) the boundary condition on the sphere surface,

∂Φ

∂Z
= δ

[
dH (0)

dR
+ δ

dH (1)

dR
+ · · ·

]
∂Φ

∂R
at Z = H (0) + δH (1) + · · · ; (3.27)

and (iv) a regularity condition, requiring the continuity of ∇Φ in the limit R → 0.
Obviously, Φ may be expressed as an asymptotic series in powers of δ. However,

since Φ satisfies a homogeneous problem (as the far-field condition does not apply
within the inner region), any arbitrary pre-factor µ(δ) may multiply this series:

Φ(R, Z, ψ; δ) ∼ µ(δ)
[
Φ (0)(R, Z, ψ) + δ Φ (1)(R, Z, ψ) + · · ·

]
. (3.28)

This pre-factor is required for matching with the outer solution. This matching also
suggests the following representation:

Φ (i)(R, Z, ψ) = G(i)(R, Z) cos ψ, i = 0, 1, . . . . (3.29)

The functions {G(i)}∞
i=0 are governed by: (i) equations

∂2G(i)

∂Z2
=

{
0, i = 0,

−L G(i−1), i > 0,
(3.30)

where L denotes the operator

L =
∂2

∂R2
+

1

R

∂

∂R
− 1

R2
; (3.31)

(ii) the boundary condition on the wall,

∂G(i)

∂Z
= 0 at Z = 0; (3.32)

and (iii) the respective orders of the boundary condition on the sphere,[
∂G(0)

∂Z
+ δ

∂G(1)

∂Z
+ · · ·

]
= δ

[
dH (0)

dR
+ δ

dH (1)

dR
+ · · ·

][
∂G(0)

∂R
+ δ

∂G(1)

∂R
+ · · ·

]
, (3.33)

which is to be evaluated at Z =H (0)(R) + δH (1)(R) + · · · .
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The O(1) problem is given by

∂2G(0)

∂Z2
= 0 for 0 � Z � H (0), (3.34a)

∂G(0)

∂Z
= 0 at Z = 0, H (0), (3.34b)

from which it is concluded that G(0) = G(0)(R). The equation governing G(0) is obtained
from the solvability condition for the O(δ) problem,

∂2G(1)

∂Z2
= −L G(0) for 0 � Z � H (0), (3.35a)

∂G(1)

∂Z
= 0 at Z = 0, (3.35b)

∂G(1)

∂Z
=

dH (0)

dR

dG(0)

dR
at Z = H (0). (3.35c)

Specifically, from (3.35a, b) it follows that

∂G(1)

∂Z
= −ZL G(0). (3.36)

Substitution into (3.35c) yields the second-order homogeneous equation,

H (0)L G(0) + R
dG(0)

dR
= 0. (3.37)

One of the solutions of (3.37) was obtained by Solomentsev et al. (1997), namely, in
present notation,

G(0) = DR
[
H (0)(R)

]β−1
F

[
1 − β, 1 − β, 2,

R2

2H (0)(R)

]
, (3.38)

where β = 2−1/2 and D is a constant of integration. This solution is ∼R as R → 0.
The other solution, ∼R−1 as R → 0, does not satisfy the regularity condition. At the
outer edge of the inner domain, where R � 1,

G(0) ∼ D
21−β�(

√
2)

[�(1 + β)]2
R

√
2−1. (3.39)

Matching of this expression with the ‘inner’ limit of the leading-order outer solution,

(3.19), yields µ(δ) = δ(
√

2−1)/2, as well as D = −1.067437. These results agree with those
of Solomentsev et al. (1997), wherein the matching was performed using their exact
bipolar-coordinate solution.

The leading-order correction may be obtained along similar lines. From (3.36)–
(3.37) it is obvious that

G(1)(R, Z) = D(1)(R) − Z2

2
L G(0). (3.40)

The equation governing D(1)(R) is obtained from the solvability condition for the
O(δ2) problem, namely

∂2G(2)

∂Z2
= −L G(1) for 0 � Z � H (0), (3.41a)
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∂G(2)

∂Z
= 0 at Z = 0, (3.41b)

∂G(2)

∂Z
=

dH (0)

dR

∂G(1)

∂R
+

dH (1)

dR

dG(0)

dR
− H (1) ∂

2G(1)

∂2Z
at Z = H (0), (3.41c)

which yields the ordinary differential equation

H (0)L D(1) + R
dD(1)

dR
= −H (1)L G(0) − dH (1)

dR

dG(0)

dR

+
1

2

dH (0)

dR

[
H (0)

]2 d

dR
L G(0) +

1

6

[
H (0)

]3
L 2G(0), (3.42)

which possesses the same homogeneous solution as (3.37), namely (3.38). It is easy to
verify that

D(1)(R) ∼ D
21−β�(

√
2)

24(1 +
√

2)[�(1 + β)]2
R

√
2+1{1 + O(R−2)} for R � 1. (3.43)

It is only this latter asymptotic behaviour of D(1) that is required in the following
analysis.

4. Flow field (c)
The problem governing contribution (c) consists of: (i) the Stokes equations,

∇ · v = 0, ∇2v = ∇p; (4.1)

(ii) the boundary conditions on the sphere and wall,

v = (1 − γ )∇Φ on P, (4.2)

v = 0 on W ; (4.3)

and (iii) the attenuation condition,

v → 0 as |x| → ∞. (4.4)

In principle, one can solve the above boundary-value problem by following the
asymptotic scheme of O’Neill & Stewartson (1967), who considered the translation
of a sphere in the proximity of a wall. However, the boundary conditions associated
with their translation problem were expressed in terms of elementary functions. In
contrast, the present boundary conditions involve terms containing derivatives of Φ

(cf. (3.7)–(3.8), (3.38)). Given the laborious effort required by O’Neill & Stewartson
(1967) towards evaluating their flow fields (and the subsequent integration of the
stresses over both the outer and inner regions), a similar approach here would appear
to constitute a formidable task.

The ansatz for the solution required here utilizes a theorem (Brenner 1964) which
enables evaluation of the force and torque without a comparable need for the detailed
solution of the pertinent flow equations. The starting point for that computational
scheme entails a reciprocal theorem (Happel & Brenner 1965) relating any two sets
of flow fields, say (v′, π′) and (v′′, π′′), each individually satisfying the incompressible
creeping flow and continuity equations within the same arbitrary fluid domain V
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bounded by the closed surface ∂V . Explicitly,∫
∂V

dS n · π′ · v′′ =

∫
∂V

dS n · π′′ · v′. (4.5)

In the case of a body immersed in a flow in rest at infinity, with a wall present in
the proximity of the body, ∂V may be taken as the union of the the boundary of the
body, P , and the surface of the wall, W .† Consider such a configuration, with velocity
field ṽ prescribed on P , and with zero velocity on W . Based upon the reciprocal

theorem, the force and torque on the particle, say F̃ and T̃ , may each be expressed
as simple quadratures of ṽ over the particle surface. Those results, expressed in the
present dimensionless notation, are embodied in the following quadratures:

F̃k =
1

6π

∮
P

dS ni Πijk ṽj , T̃k =
1

8π

∮
P

dS ni Πijk ṽj , (4.6)

wherein Π = ei ej ek Πijk and Π = ei ej ek Πijk denote the respective translational and
rotational triadic ‘stress’ fields (Happel & Brenner 1965) which depend, apart from
the position vector x, only upon the geometry of the particle–wall configuration.
Explicitly, the dyadic stress field arising from translational motion of the particle
with an arbitrary velocity U is given by Π · U; similarly, the dyadic stress field arising
from rotational motion of the particle with an arbitrary angular velocity Ω is given

by Π · Ω . The scalar x- and y-components of F̃ and T̃ are, therefore,

F̃1 =
1

6π

∮
P

dS n · πtr · ṽ, T̃2 =
1

8π

∮
P

dS n · πrot · ṽ. (4.7)

In the above, πtr is the dyadic stress field arising from translational motion of the
sphere with a unit velocity in the x-direction in a fluid at rest on W and at infinity.
Similarly, πrot is the stress field arising from rotational motion of the sphere, about
its centre, with a unit angular velocity in the y-direction, in a fluid at rest on W and
at infinity. Explicitly, if the flow fields (vtr, ptr) and (vrot, prot) respectively satisfy the
following boundary conditions:

vtr = ex on P, vrot = ey × (x − xO) on P,

vtr = 0 on W , vrot = 0 on W ,

vtr → 0 as |x| → ∞, vrot → 0 as |x| → ∞,

then the stress fields πtr and πrot are simply given by the constitutive expression (2.11),
with (v, p) respectively replaced by (vtr, ptr) and (vrot, prot). This result (in a more
general form) was used by Goldman, Cox & Brenner (1967b) to evaluate the force
and torque on a stationary sphere near a plane wall in the presence of a uniform
shear flow far from the sphere.

As the velocity field (c) vanishes on the wall and at infinity, the theorem may be
used with (1 − γ )∇Φ substituted for ṽ in (4.7), yielding

F = (1 − γ )fel(δ), T = (1 − γ )gel(δ), (4.8)

† The contribution from the boundary at infinity vanishes under very moderate conditions
imposed upon both v′ and v′′ – say, attenuation at least as fast as |x|−1. These conditions are
virtually always satisfied.
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wherein the force and torque coefficients are given by the surface quadratures

fel(δ) =
1

6π

∮
P

dS n · πtr · ∇Φ, (4.9)

gel(δ) =
1

8π

∮
P

dS n · πrot · ∇Φ. (4.10)

Note that these expressions are valid for any gap width (not necessarily small).†
The hydrodynamic fields, πtr and πrot, as well as the electric potential have been

evaluated for both arbitrary and small separations, enabling the evaluation of F

and T in both cases. Effecting the respective quadratures (4.9) and (4.10) using the
exact bipolar-coordinates expressions for ϕ, πtr and πrot is straightforward. The exact
solution for ϕ was obtained by Keh & Chen (1989), whereas the respective solutions
for the translational and rotational flow fields were derived by O’Neill (1964) and
Dean & O’Neill (1963). We have reconstructed these solutions for δ as small as 0.005
and evaluated fel(δ) and gel(δ) via appropriate integrations in bipolar coordinates.

Consider now the case of small separation, for which the electric field has been
evaluated in the previous two sections. The ‘translational’ flow field, (vtr, ptr), for
the small-gap geometric configuration, has already been evaluated by O’Neill &
Stewartson (1967), and the comparable ‘rotational’ field, (vrot, prot), by Cooley &
O’Neill (1968). These fields were evaluated in both the inner and outer regions. Thus,
in principle, the force (and torque) may be represented as the sum of respective inner
and outer contributions, expressed as integrals over complementary domains on the
sphere surface. The integration in the inner contribution is carried out over the range
ρ � ρ0, with δ1/2 � ρ0 � 1 denoting a value lying within the ‘intermediate region’
where the matching takes place. The respective integration in the outer contribution
is performed over the interval 0 � η � η0, with η0 denoting the value of the outer
variable η corresponding to ρ0. (To leading order, η0 = 2ρ0/(1 + ρ2

0 ).)
Consider first the force acting on the sphere, given by (4.9). We begin with the

calculation of the inner contribution. Within the gap, the translational velocity and
pressure fields are represented by the respective forms (O’Neill & Stewartson 1967)

vtr(R, ψ, Z) = eρU (R, Z) cos ψ + eψV (R, Z) sin ψ + ezW (R, Z) cos ψ, (4.11)

ptr(R, ψ, Z) = P (R, Z) cos ψ. (4.12)

The corresponding stress field, πtr, is evaluated using (2.11); the traction at a point
on the sphere surface is given, in terms of the functions (U, V, W ) and P , by the
expression

n · πtr = eρ

[(
−P + 2δ−1/2 ∂U

∂R

)
sin χ −

(
δ−1 ∂U

∂Z
+ δ−1/2 ∂W

∂R

)
cos χ

]
cos ψ

+ eψ

[(
δ−1/2R

∂

∂R

(
V

R

)
− δ−1/2 U

R

)
sin χ −

(
δ−1 ∂V

∂Z
− δ−1/2 W

R

)
cos χ

]
sin ψ

+ ez

[(
δ−1 ∂U

∂Z
+ δ−1/2 ∂W

∂R

)
sin χ +

(
P − 2δ−1 ∂W

∂Z

)
cos χ

]
cos ψ, (4.13)

† An alternative use of the reciprocal theorem appears in the work of Teubner (1982), expressing
the force and torque acting on a body as linear functionals of the electric field. That work, which is
not limited to thin Debye layers, entails the exact flow and electric equations, taking into account
electrical body forces. The resulting force and torque expressions therefore involve volume – rather
than surface – integrals. However, since in the general case the electric field is coupled to the fluid
motion, these results are only formal and do not remove the need to solve the flow field.
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with π − χ the polar angle between the radius vector to the sphere surface from its
centre and the z-axis, wherein sin χ = δ1/2R, and the outward normal unit vector n on
the sphere given by eρ sin χ − ez cos χ . The fields (U, V, W ) and P have the respective
asymptotic forms

U (R, Z; δ) = U (0)(R, Z) + δU (1)(R, Z) + · · · , (4.14a)

V (R, Z; δ) = V (0)(R, Z) + δV (1)(R, Z) + · · · , (4.14b)

W (R, Z; δ) = δ1/2
[
W (0)(R, Z) + δW (1)(R, Z) + · · ·

]
, (4.14c)

P (R, Z; δ) = δ−3/2
[
P (0)(R, Z) + P (1)(R, Z) + · · ·

]
, (4.14d)

in which the functions [U (0), V (0), W (0)] and P (0) were explicitly evaluated by
O’Neill & Stewartson (1967).

In terms of the stretched gap variables, the inner integration is carried out over the
range R � R0, with 1 � R0 � δ−1/2. Substitution of the expansions (4.14) and (3.28)
into (4.13) and (4.9), in conjunction with the sphere surface equation, (3.22), and the
expression

dS = sin χ dχ dψ ∼ δ

[
1 + δ

R2

2
+ O(δ2)

]
R dR dψ (4.15)

for the area element, enables the inner contribution to fel to be expressed by the
asymptotic expansion

f inner
el (δ; R0) ∼ δ−1/2µ(δ)

∫ R0

0

[
F (0)(R) + δF (1)(R) + O(δ2)

]
dR. (4.16)

The leading-order term in this integrand is given by

F (0)(R) =
R

6

[
P (0) ∂G(1)

∂Z
− RP (0) dG(0)

dR
− ∂U (0)

∂Z

dG(0)

dR
+

∂V (0)

∂Z

G(0)

R

]
Z=H (0)(R)

. (4.17)

Upon making use of (3.35c) together with the explicit expressions for the functions
[U (0), V (0), W (0)] and P (0) (O’Neill & Stewartson 1967), one obtains

F (0)(R) =
4

15

[
R2 − 4

2R2 + 4

dG(0)

dR
− G(0)

R

]
R

H (0)(R)
. (4.18)

Since this term varies like R
√

2−3 for large R, it is allowable to set R0 = ∞ in (4.16)
in order to evaluate the integral of F (0), say a0. The integral was evaluated using
the expressions (3.38) and (3.39), yielding a0 = 0.99337. Thus, the leading-order inner
contribution to the force is

f inner
el

(0)
(δ) = a0δ

√
2/2−1. (4.19)

Observe, as δ → 0, that this term dominates those resulting from translation and
rotation, which diverge only as log δ (cf. (6.5)–(6.6)). The fact that this result does
not depend upon R0 signals that no comparable contribution to the force arises from
the outer region. Indeed, consider the leading-order outer contribution to the force,
which may in principle be expressed as an integral over η in the range 0 � η < η0.
As δ does not appear in the leading-order outer problem, this integral can depend
only upon η0, say I (η0). If limη0→∞ I (η0) exists, the integral is O(1), and thus sub-
dominant to (4.19). Otherwise, the arbitrariness in the choice of η0 requires that the
(presumably divergent) η0-dependent terms, expressed in terms of the inner variable
R0 by the relation η0 = η0(δ, R0), be cancelled by comparable terms arising from the
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inner contribution to the force; but this is impossible as the inner leading-order
contribution to the force (4.19) does not depend upon R0. We thus conclude that the
outer contribution to the force is at most of O(1).

It still remains to estimate the next-order contribution from the inner region. In
order to evaluate F (1), explicit expressions for the functions [U (1), V (1), W (1)] and P (1)

are required. However, these fields were evaluated by O’Neill & Stewartson only for
R � 1. Using their expressions in conjunction with (3.39) and (3.43) it may be verified
that

F (1)(R) ∼ AR
√

2−1[1 + O(R−2)] for R � 1, (4.20)

where the constant A depends upon the asymptotic leading-order behaviour of the
translational inner flow field for R � 1. Thus, the leading-order inner correction to
the force is given in the form

f inner
el

(1)
(δ) = δ

√
2/2

[
A1R

√
2

0 + A2

]
, (4.21)

wherein A1 = A/
√

2 and the constant A2 depends upon the overall properties of the
inner fields. (As the total force cannot depend upon the arbitrary parameter R0, it is
obvious that the first term of (4.21) must be cancelled out by a corresponding term

from the outer contribution, namely −(1 − γ )A1ρ
√

2
0 .) Note that F (1) is o(1) for δ � 1.

Consequently, the total force resulting from the electrically induced flow field (c) is
given by the expression

fel(δ) ∼
[
a0δ

√
2/2−1 + a1 + o(1)

]
, (4.22)

with a1 dependent upon the overall properties of the outer fields.
Similar arguments apply to evaluation of the torque, given by (4.10). The rotational

flow field (Cooley & O’Neill 1968) possesses the same structure as the translational
field, namely (4.11)–(4.14). Thus, the inner contribution to the torque is expressed in
a form similar to (4.16) as

ginner
el (δ) = δ−1/2µ(δ)

∫ R0

0

[
T (0)(R) + δT (1)(R) + · · ·

]
dR, (4.23)

with T (0)(R) given by the same expression as is F (0), namely (4.17). Use of the
‘rotational’ expressions for the functions [U (0), V (0), W (0)] and P (0) (Cooley & O’Neill
1968) yields

T (0)(R) =
1

20

[
G(0)

R
+

2 + 7R2

2 + R2

dG(0)

dR

]
R

H (0)(R)
. (4.24)

As with (4.18), this expression may be integrated by setting R0 = ∞, yielding −3a0/4.
The torque coefficient, associated with the ‘electrical’ flow (c), is therefore given by

gel(δ) ∼
[
b0δ

√
2/2−1 + b1 + o(1)

]
, (4.25)

with b0 = −3a0/4 and with b1 depending upon the overall properties of the outer
fields.

In principle, the coefficients a1 and b1 can be obtained via evaluation of the integrals
(4.9) and (4.10) over the outer region. This, however, turns out to be extremely difficult
since both the outer (translational and rotational) flow fields, and the outer electric
potential, are expressed as Hankel transforms (cf. (3.7)–(3.8)). Instead, we employ
the more straightforward approach of Goldman et al. (1967a), evaluating these
coefficients via ‘patching’ of the asymptotic expressions (4.22) and (4.25) with their
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corresponding ‘exact’ values. The latter have been obtained by effecting the respective
quadratures (4.9) and (4.10) using the exact bipolar-coordinates expressions for ϕ, πtr

and πrot. From these exact values we derived the approximate results, a1 ≈ 0.3224
and b1 ≈ 1.1742.

5. Flow field (d)
In terms of the resulting forces and torques, flow field (d) is equivalent to that

obtained via a Galilean transformation involving the velocity γ ∇Φ∞ = −γ ex . The
problem governing the transformed field consists of: (i) the flow equations,

∇ · v = 0, ∇2v = ∇p; (5.1)

(ii) the boundary conditions on the sphere and wall,

v = γ ∇ϕ on P, (5.2)

v = γ ∇ϕ on W ; (5.3)

and (iii) the attenuation condition,

v → 0 as |x| → ∞. (5.4)

As any (solenoidal) irrotational flow field automatically satisfies Stokes equations,
it is obvious that the solution of problem (d) is simply

v ≡ γ ∇ϕ, p ≡ 0. (5.5)

The corresponding stress field is

π = 2γ ∇∇ϕ. (5.6)

Consider the hydrodynamic force on the sphere resulting from this field. Since this
field is divergence-free, the integral appearing in (2.12) may be evaluated over any
arbitrary surface within the fluid domain that encloses the sphere. It is convenient to
choose the domain of integration as constituting the union of two surfaces – the first
being the disk (0 � ρ � ρ0, z = 0, 0 � ψ � 2π) located on the wall, and the second
chosen as the hemisphere, ρ2 + z2 = r2

∞ (with z > 0). Since ϕ ∼ O(|x|−2) for large |x|,
the hemisphere contribution vanishes as r∞ → ∞. The force F is therefore opposite
in sign to the hydrodynamic force acting on the wall, the latter being given by the
expression

Fw = 2γ

∫
W

dS ez · ∇∇ϕ. (5.7)

In terms of circular cylindrical coordinates,

Fw = −2γ

∫ 2π

0

dψ

∫ ∞

0

dρ ρ

[
∂

∂z
(∇ϕ)

]
z=0

. (5.8)

This expression vanishes owing to the cos ψ azimuthal dependence of ϕ. Thus, the
force on the wall (and, consequently, on the sphere) vanishes identically. Since the
azimuthal dependence of the electric potential upon ψ reflects the geometric symmetry
of the particle–wall configuration, it is obvious that this result is true for any gap
width (not necessarily small).

Next, consider the dimensionless torque on the sphere, which is most conveniently
expressed in terms of the position vector r = x − xO relative to the sphere centre
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(cf. (2.13)),

T = 2γ

∮
P

dS r × (n · ∇∇ϕ). (5.9)

To evaluate this torque we employ a spherical polar coordinate system, (r, χ, ψ),
centred about xO . The gradient operator, expressed in this system, may be written in
the form

∇ = e
∂

∂r
+

1

r
∇e, (5.10)

where e = r/r is a radial unit vector and the operator,

∇e = eχ

∂

∂χ
+ eψ

1

sin χ

∂

∂ψ
, (5.11)

represents differentiation along the unit sphere surface, P . On this surface, where
r = 1, it follows that r = n = e. Hence,

T = 2γ

∫
P

dS e × ∂

∂r
(∇ϕ)

= 2γ

∫
P

dS e ×
[
e
∂2ϕ

∂r2
+

1

r
∇e

(
∂ϕ

∂r

)
− 1

r2
∇eϕ

]
= 2γ

∫
P

dS e ×
[

∇e

(
∂ϕ

∂r

)
− ∇eϕ

]
. (5.12)

However, owing to the boundary condition (2.4), (∂ϕ/∂r)r=1 = e · ex . Since the operator
∇e is r-independent, it is permissible to exchange the respective orders of the
differentiation and evaluation at r = 1, yielding[

∇e

(
∂ϕ

∂r

)]
r=1

= ∇e

[(
∂ϕ

∂r

)
r=1

]
= (∇e e) · ex = (I − ee) · ex. (5.13)

Thus, T may be expressed as the difference of two integrals,

T = 2γ

∮
P

dS e × ex − 2γ

∮
P

dS e × ∇eϕ. (5.14)

The first integral vanishes owing to the antisymmetry of the integrand with respect
to P . To evaluate the second integral, note that ϕ must possess the functional form
φ(χ) cos ψ on r = 1 (cf. (3.7), (3.29)). Consequently,∮

P

dS e × ∇eϕ = −
∫ 2π

0

dψ

∫ π

0

dχ sin χ

[
eψφ′(χ) cos ψ + eχ

φ(χ)

sin χ
sin ψ

]
= −πey

∫ π

0

[φ′(χ) sin χ + φ(χ) cos χ ] dχ. (5.15)

Integration by parts reveals that this integral also vanishes. Thus, no torque is exerted
on the sphere. As with the force, this result holds true for any gap width.

Since ∇∇ϕ is a divergence-free symmetric dyadic, and since the integrand of (5.9)
appears to attenuate as O(|x|−3) for large |x| (cf. (3.17)), it seems plausible that Gauss’s
theorem may be applied, so as to transform the integral (5.9) into one performed over
the wall. One would then expect the resulting torque (about the sphere centre) on the
wall to also vanish. However, this does not turn out to be the case. The evaluation of
the torque acting on the wall, as well as the rationalization of this apparent paradox,
are outlined in the Appendix.
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We conclude that flow field (d) exerts neither a force nor a torque on the sphere.
Considering the form of the boundary conditions applicable to problems (a)–(c), it
may be concluded that both the translational and rotational electrophoretic mobilities
are proportional to 1 − γ (or, in dimensional notation, to ζp − ζw). This result holds
for any gap width (cf. (6.3)). This proportionality was suggested by Keh & Chen
(1989), based upon their numerical results.

We have not yet been able to establish whether the source of the null contributions
of part (d) to the force and torque on the sphere is a consequence of the geometrical
symmetry of the sphere–wall geometry (which has been exploited in the foregoing
derivation), or is actually a more general result for all irrotational flow fields, which
holds irrespective of the specific particle–boundary configuration. In a separate
paper (Yariv & Brenner 2003) we have demonstrated that this same null result
also holds for the case of a sphere eccentrically positioned within a circular cylinder.
Again, however, that geometry possesses several symmetry properties (which were
used throughout that analysis).

It is, of course, well known that irrotational Stokes flow does not exert a force on
a body in an unbounded fluid (Morrison 1970). As such, it is tempting to believe
that this result can easily be extended to the case where boundaries are present.
However, Morrison’s (1970) proof invokes the rapid attenuation of irrotational flow
fields at infinity (Batchelor 1967) (in a manner similar to that involved in the proof of
d’Alembert’s paradox in inviscid fluid-flow theory, where the forces arise from pressure
variations rather than from viscous friction). Obviously, this attenuation argument
does not guarantee the absence of forces or torques in the presence of boundaries,
as the pertinent surface integrals cannot be extended to infinity. (Indeed, for the
comparable problem of a bubble moving through an inviscid liquid, the velocity field
is also irrotational; nevertheless, the presence of boundaries results in a net force on
the bubble (Miloh 1977).)

6. Results and discussion
Although the ultimate focus of the present paper is the asymptotic limiting case

δ � 1, it proves worthwhile to first discuss the structure of the mobility expressions
for the case of arbitrary (not necessarily small) sphere–wall separations. Such an
approach, which elucidates the various elements entering into the electrophoretic
motion, is supported by the generality of the problem formulation in § 2 (and,
specifically, the decomposition of the overall motion into the respective components
(a)–(d)).

Since contributions (c) to the force and torque are respectively directed in the x-
and y-directions, it is obvious that a force- and couple-free particle will respectively
translate parallel to and rotate about axes in these directions. Thus, in evaluating the
forces and torques in problems (a) and (b), one need only consider the respective cases
U = U ex and Ω =Ωey (see also the discussion following (2.13)). The force and torque
(about the sphere centre) acting on a non-rotating sphere translating with velocity U

parallel to a nearby wall are represented by the respective forms ftr(δ)U and gtr(δ)U .
Similarly, the force and torque on a non-translating sphere rotating with velocity
Ω about an axis parallel to the wall are represented as frot(δ) Ω and grot(δ) Ω . The
functions ftr(δ), gtr(δ), frot(δ) and grot(δ), which correspond to translation and rotation
with unit velocities, are independent of the respective magnitudes of the sphere
velocities. Rather, they only depend upon the sphere–wall geometric configuration,
lumped into the single geometric parameter δ. The ‘exact’ series expressions for ftr(δ)
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and gtr(δ), valid for arbitrary values of δ, are provided by O’Neill (1964); comparable
expressions for frot(δ) and grot(δ) are given by Dean & O’Neill (1963).

It is obvious from the structure of the ‘electrical’ problem (c), defined by (4.1)–(4.4),
that the corresponding force and torque are proportional to 1 − γ , namely

(1 − γ ) fel(δ), (1 − γ ) gel(δ).

The exact expressions for fel(δ) and gel(δ), appropriate for arbitrary values of δ,
were evaluated (in the form of numerical quadratures) using the respective bipolar-
coordinate expressions for the translational (O’Neill 1964) and rotational (Dean &
O’Neill 1963) flow fields (see § 4). Their asymptotic counterparts (cf. (4.22) and (4.25))
were evaluated using the respective small-gap flow fields.

Since flow field (d) does not contribute any force or torque, the total force and
torque acting on the translating–rotating sphere in the present problem are given by
the expressions

F = U ftr(δ) + Ω frot(δ) + (1 − γ ) fel(δ), (6.1)

T = U gtr(δ) + Ω grot(δ) + (1 − γ ) gel(δ). (6.2)

The respective translational and angular velocities of a force- and couple-free sphere
are therefore

U

1 − γ
=

frot(δ) gel(δ) − grot(δ) fel(δ)

ftr(δ) grot(δ) − frot(δ) gtr(δ)
, (6.3)

Ω

1 − γ
=

gtr(δ) fel(δ) − ftr(δ) gel(δ)

ftr(δ) grot(δ) − frot(δ) gtr(δ)
. (6.4)

Consider now the asymptotic limit, δ � 1. The force and torque on a non-
rotating sphere translating with unit velocity parallel to a nearby wall were obtained
by O’Neill & Stewartson (1967). In present notation, they are given by the respective
expressions

ftr(δ) = 8
15

log δ − 0.95429 + o(1), gtr(δ) = − 1
10

log δ − 0.19296 + o(1). (6.5)

The comparable results for a non-translating sphere rotating with a unit angular
velocity about an axis parallel to the wall are (Cooley & O’Neill 1968)

frot(δ) = − 2
15

log δ − 0.25725 + o(1), grot(δ) = 2
5
log δ − 0.37085 + o(1). (6.6)

The approximations for fel(δ) and fel(δ), calculated in § 4, are

fel(δ) = a0δ
√

2/2−1 + 0.3224 + o(1), gel(δ) = −3a0

4
δ

√
2/2−1 + 1.1742 + o(1), (6.7)

with a0 = 0.99337.
The small-gap approximations for the mobilities are obtained by substitution of

(6.5)–(6.7) into (6.3). In the limit δ → 0 these become, to terms of dominant order,

U

1 − γ
=

Ω

1 − γ
∼ −3a0

2

δ
√

2/2−1

log δ
, (6.8)

indicating a large translational velocity in the x-direction and an equally large angular
velocity in the negative y-direction. These trends agree with the numerical results of
Keh & Chen (1989) as their gap width becomes small. Thus, the presence of the wall
results in a major enhancement of the sphere’s electrophoretically driven velocity.

The exact translational mobility as function of δ is evaluated via substitution
into (6.3) of the exact expressions for the coefficients ftr(δ), . . . , gel(δ). The resulting
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Figure 3. Electrophoretic mobility, U/(1 − γ ), as function of δ: , ‘exact’; - - -, small-gap
approximation; —, large-gap approximation (Keh & Anderson 1985).

numerical values agree with those provided by Keh & Chen (1989). (Note, however,
that these authors have evaluated the exact detailed electrokinetic flow field. The
present solution scheme, which makes use of the reciprocal theorem, involves only
quadrature of known fields and does not require the comparable solution of partial
differential equations. As such, it is expected to provide more accurate results.) Figure 3
displays the variation with δ of this mobility, as well as the corresponding small-gap
approximation. Also depicted is the asymptotic approximation for large sphere–wall
separations (δ � 1),

1 − 1
16
λ3 + 1

8
λ5,

with λ= (1 + δ)−1 the ratio of the sphere’s radius to the distance of its centre from
the wall, a result obtained by Keh & Anderson (1985) using reflection techniques.
Keh & Anderson (1985) actually obtained a more accurate approximation, including
an additional O(λ6) term. However, their analysis is based upon the implicit
assumption that the particle is prevented from rotating. Therefore, only the O(λ3, λ5)
leading corrections, corresponding to the first wall reflection, are valid for the present
case of a freely suspended particle. The second wall reflection, associated with the
O(λ6) term, depends upon the sphere’s angular velocity.

In order to understand the physical mechanism responsible for the velocity
enhancement at small separations, it is necessary to consider the qualitative difference
between electrophoresis and conventional Stokes-flow motion under an external field
(e.g. gravity) in an electrolyte-free liquid. Since the linear Smoluchowski relation
resembles the conventional mobility relation for a particle in Stokes flow, it can
mistakenly be interpreted as representing a conventional force formula appropriate
for an electrically charged body in the presence of an applied electric field. However,
such an analogy is misleading, since the ‘body’ (which consists of a colloidal particle
and its surrounding Debye layer) is electrically neutral. (Indeed, if the Debye screening
length κ−1 is small compared with the linear particle dimension a, the zeta potential
is actually O(κa) smaller (Probstein 1989) than the surface potential that a particle
having the same surface charge would possess in an electrolyte-free liquid.) As
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explained by Anderson (1988), the mechanism underlying electrophoretic motion is
that such a body is not rigid (owing to the relative fluid motion in the Debye layer).
Thus, in contrast to the direct motion caused by an external field, electrophoresis
results from indirect, ternary interactions between the external electric field, the
particle, and the Debye layer.

In the case of remote boundary effects (Keh & Anderson 1985), such indirect
interactions result in weak short-range forces that attenuate with the third power
of the particle–wall distance (as opposed to the long-range forces resulting from
wall effects in conventional Stokes flows, which are inversely proportional to this
distance (Happel & Brenner 1965)). In the present analysis, however, the above-
mentioned indirect interactions result in a different effect, which is related to the
strong electric field existing in the gap region. This field exerts strong body forces on
the non-neutral fluid elements comprising the Debye layer, thereby enhancing particle
speed. (Obviously, this phenomenon has no counterpart in electrolyte-free externally
driven motions.) While these body forces are explicitly absent from the bulk-scale
description, they are nevertheless implicit in the large velocity slip prescribed at the
particle surface.

As argued by Keh & Chen (1989), the interaction between the particle and the
wall results in two oppositely directed effects. The first reflects the enhanced viscous
retardation, acting to diminish the particle velocity. The second effect is the one
discussed above, which is associated with intensification of the electric field in the gap

region, acting to increase the particle velocity. (For δ � 1, this field is O(δ
√

2/2−1).)
While the former effect is dominant for particles that are relatively remote from the
wall, the latter becomes comparable in magnitude to the former for small gap widths.

The present analysis is, of course, limited to the case where the gap width, while
small compared with the particle dimension, is nevertheless large relative to the
Debye-layer thickness. The investigation of the more general case, namely that of
overlapping Debye layers, is a desirable extension of the present analysis. Such an
investigation is probably possible within the framework of linear electrophoresis,
and a similar one has been performed in the context of electrophoretic rotation of
doublets (Velegol et al. 1998). It is important to note, however, that the Debye-layer
thickness (which depends upon the equilibrium ionic concentration) may be of the
order of nanometres for typical concentration values (Probstein 1989). Such small
values suggest that the present model is likely to be valid for a wide range of gap
widths.

A different limitation arises from the basic assumption underlying linear
electrophoresis, namely a weak applied field. In the absence of wall effects it suffices
to require that E∞ be small compared with the natural scale of the electric field in the
equilibrium Debye layer, namely κζ . However, this requirement may not suffice in the
present analysis, since the strong electric field existing in the gap region may invalidate
the linear perturbation scheme about an equilibrium Debye-layer structure. Thus, it

should be modified to the stronger form δ
√

2/2−1 � κζ/E∞. For typical values in
encountered microfluidic devices (say, κ ≈ 109 m−1, ζ ≈ 0.1 V, and E∞ ≈ 1000 V m−1)
this asymptotic inequality extends over a wide range of (small) δ values.

Finally, we comment upon the potential use of the present mobility model. While it
may appear from (6.8) that U and Ω both become unbounded as δ → 0, this trend is
rendered invalid at gap separations of O(κ−1), where the assumption of a thin Debye
layer breaks down. However, since the divergence of the mobility as δ → 0 is rather
weak (and, more importantly, integrable), it is expected that the local details of the
thin Debye-layer region do not affect any integral results obtained using the present
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mobility data.† As such, the small-gap approximation for the mobility may be used
when performing a macrotransport analysis entailing the electrokinetic motion of a
Brownian particle in the presence of boundaries (cf. Brenner & Gaydos 1977). This
will constitute the subject of a subsequent publication.

The authors are grateful to Eli Lilly and Company for their interest and financial
support.

Appendix. The torque accompanying flow field (d)
The torque acting on the wall may be evaluated (at least to leading order) by using

the respective asymptotic expressions for ϕ in the inner and outer regions. As the
stresses on W do not give rise to any net force, this torque constitutes a couple. It is
convenient to evaluate the pertinent force moments relative to the origin. In terms of
cylindrical coordinates, this couple is given by the expression

Tw = 2γ

∫ 2π

0

dψ

∫ ∞

0

dρ ρ2 eρ × (ez · ∇∇ϕ)z=0. (A 1)

Introduction of the matching parameter, δ1/2 � ρ0 � 1, enables this integral to be
separated into inner and outer contributions, corresponding to ρ-integration over the
respective intervals [0, ρ0] and [ρ0, ∞]. In terms of the appropriate coordinate systems,
these contributions are respectively given by the expressions

Tw,inner = 2γ δ1/2

∫ 2π

0

dψ

∫ ρ0/δ
1/2

0

dR R2eρ ×
[

∂

∂Z
(∇ϕ)

]
Z=0

, (A 2)

Tw,outer = 4γ

∫ 2π

0

dψ

∫ 2/ρ0

0

dη
1

η

[
x × ∂

∂ξ
(∇ϕ)

]
ξ=0

. (A 3)

Consider first the outer contribution. To leading order in δ we may let ρ0 approach
zero during the outer-region integration process. Use of (3.7) eventually yields

T (0)
w,inner = 4πγ I ey, (A 4)

wherein

I = lim
η0→∞

∫ η0

0

dη

[
M

η
+ 2

∂M

∂η
− η

∂2M

∂ξ 2

]
ξ=0

. (A 5)

Substitution into the above of (3.8), followed by interchange of the order of integration,
yields

I = lim
η0→∞

∫ ∞

0

ds
G(s)

sinh s

∫ η0

0

dη
J1(sη)

η

− lim
η0→∞

∫ ∞

0

ds
s2G(s)

sinh s

∫ η0

0

dη η J1(sη) � I1 − I2. (A 6)

† This phenomenon resembles that for Prandtl’s large-Reynolds-number boundary layer on a
semi-infinite flat plate. The skin friction distribution obtained from the inner analysis is invalid near
the leading edge. However, the weak divergence of that distribution near the edge allows evaluation
of the leading-order drag on the plate without the need to separately analyse the leading-edge
region (Van Dyke 1964).



Near-contact electrophoretic motion of a sphere parallel to a planar wall 109

In the evaluation of I1 the order of the limit process may be interchanged with the
outer integration, so as to obtain

I1 =

∫ ∞

0

ds
G(s)

sinh s

∫ ∞

0

dη
J1(sη)

η
. (A 7)

The comparable calculation of I2 is not so straightforward, since the integral∫ ∞
0

dη η J1(sη) diverges. Instead, we first integrate the inner integral by parts to
obtain

I2 = lim
η0→∞

[ ∫ ∞

0

ds
sG(s)

sinh s

∫ η0

0

dη J0(sη) − η0J0(sη0)

∫ ∞

0

ds
sG(s)

sinh s

]
. (A 8)

It is permissible to interchange the order of the limit process and the inner integration
in the first bracketed term. Use of the large-argument asymptotic expression for J0

(Abramowitz & Stegun 1970) in the second term thereby yields, upon rearrangement,

I2 =

∫ ∞

0

ds
sG(s)

sinh s

∫ ∞

0

dη J0(sη) − lim
η0→∞

(
2η0

π

)1/2 ∫ ∞

0

ds
s1/2G(s)

sinh s
cos

(
sη0 − π

4

)
.

(A 9)

According to the Riemann–Lebesgue lemma, the last integral is attenuated as O(1/η0)
for large η0. Accordingly, the second term in (A 9) vanishes. Evaluation of the integrals
of the Bessel functions (Gradshteyn & Rhyzhik 1980) yields

I1 = I2 =

∫ ∞

0

ds
G(s)

sinh s
. (A 10)

Numerical integration gives I ≈ −0.91.
Next, consider the inner contribution to Tw . From (3.37), (3.38) and (3.40) it is

clear that [
∂

∂Z
(∇ϕ)

]
Z=0

∼ µ(δ)ez

R

H (0)(R)

dG(0)

dR
[1 + O(δ)].

The integral (A 2) is obviously dominated by the large-R region, wherein the respective

integrand diverges as O(R
√

2−1). Thus, Tw,inner ∼ O(ρ
√

2
0 ) � 1. Hence, to leading order,

Tw is given by the contribution of the outer region. This was to be expected, as the
boundary conditions (d) do not introduce any singularity within the gap (as opposed,
say, to the ‘non-uniform’ condition case (c)). A somewhat similar situation was
observed by Jeffrey (1978) in the context of heat conduction, wherein the outer
solutions became singular (as η → ∞) only for ‘non-uniform’ (Dirichlet) boundary
conditions (i.e. different temperatures on the wall and sphere).

We thus conclude that the wall experiences a finite couple, in contrast to that
experienced by the sphere. Resolution of this apparent paradox concerns the non-
uniformity of the far-field approximation (3.17) in the region near the wall, where
ξ � η. Indeed, on the wall itself (ξ = 0) the main contribution to the integral
representation (3.14) of M arises from the region s ∼ O(η−1). Use of the asymptotic
form of G for large arguments yields, in terms of the integration variable t = ηs,

M =

∫ ∞

0

G(s)

sinh s
J1(ηs) ds ∼ 2

η2

∫ ∞

0

t J1(t) e−2t/η dt. (A 11)
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Evaluation of this integral yields, when expressed in cylindrical coordinates,

ϕ(0) ∼ 4
cos ψ

ρ
. (A 12)

Thus, the effect of the plane is to diminish the rate of attenuation of the electro-
osmotic velocity field at large distances from the sphere. Hence, any attempt to
evaluate the torque on the sphere using Gauss’s theorem is frustrated by the resulting
slow attenuation, namely of O(|x|−3) for large |x|, of the stresses near the wall.
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